

Ultrasonic treatment of lignocellulosic biomass for sugar production

Silvia Tabasso¹, Emanuela Calcio Gaudino², Giorgio Grillo², Tatiana Dizhbite³, Galina Telysheva³, Giancarlo Cravotto²

¹Dipartimento di Chimica, Via P.Giuria 7, 10125 Turin (Italy) ²Dipartimento di Scienza e Tecnologia del Farmaco and Centre for Nanostructured interfaces and surfaces (NIS) University of Turin, Via P. Giuria 9, 10125 Turin (Italy) ³Latvian State Institute of Wood Chemistry, Dzerbenes str. 27 Riga LV-1006, Latvia

email: silvia.tabasso@unito.it

Titanium Horn

20 kHz/150-200 W

Lignocellulosic materials from agro-forestry sector represent a substantial renewable source of chemicals, energy and fuels that do not compete with food production and animal feed. However, a pretreatment is necessary to separate the cellulose from hemicellulose and lignin, which is recalcitrant to further biological degradation. Ultrasound (US) provides a high energy input that destroys the lignocellulosic matrix at mild conditions, without generation of toxic byproducts or wastes streams.^{1,2} In this work, different US device were tested for wheat straw and

poplar wood pre-treatment.

Wheat straw

US pre-treatment processes for wheat straw: different device were tested comparing water and mixtures of water and γ -valerolactone (GVL) as solvents

US Device	Solvents	Frequency (kHz)	Time (min.)	Т (°С)	Energy consumption (kWh)	Weight loss (%)	Delignification ^a (%)
Ti horn	H ₂ O	20	40	58	0,12	7,5	15,50
Ti horn	H ₂ O	20	20	62	0,04	7,5	15,50
Ti horn	GVL/H ₂ O (1:1)	20	40	65	0,12	30,0	40,20
Ti horn	GVL/H ₂ O (1:1.5)	20	40	65	0,15	17,0	43,40
Ti horn	NH ₄ OH 15%	20	40	65	0,11	22,5	29,00
Weber Ultrasonic	H ₂ O	29	20	25	0,07	15,0	22,80
Weber Ultrasonic	H ₂ O	80	20	25	0,06	10,0	20,50
RSHC ^b	H ₂ O	-	10	40	10,00	15,0	25,00

^aThe delignification was measured by Py-GC/MS/FID (lignin proportion in the volatiles compared to untreated biomass) ^bLarge scale experiment (400 g)

SEM images of raw wheat straw

SEM images of Ti horn US treated wheat straw sample

Images of wheat straw: (a) Rehydrated biomass (b) Raw material (c) Wet biomass after treatment (d) Dry biomass after treatment

Weber Ultrasonic

29.0, 40.0, 80.0, 120.0 kHz/150-200 W Hydrodynamic cavitation (RSHC)

200 W

Poplar wood

US device

Acoustic cavitation

US Device	Solvents	Frequency (kHz)	Time (min.)	т (°С)	Energy consumption (kWh)	Weight loss (%)	Delignification ^a (%)
Ti horn	H ₂ O	20	40	41	0,10	7,5	4,4
Ti horn	H ₂ O	20	20	42	0,07	5.0	3,6
Ti horn	GVL/H ₂ O (1:1)	20	40	65	0,14	4.0	4,8
Ti horn	GVL/H ₂ O (1:1.5)	20	40	65	0,17	8.0	8,4
Weber Ultrasonic	H ₂ O	29	20	24	0,06	10	10,8

Optical microscope images of wheat straw before and after US treatment in H₂O, GVL/H₂O.

A and D: raw wheat straw **B, E**: US treated wheat straw in water (Ti horn (20 kHz) 40 min 150 W); **C, F**: US treated wheat straw in GVL/Water (Ti horn (19.5 kHz) 40 min 200 W).

References

S. Tabasso, D. Carnaroglio, E. Calcio Gaudino, G. Cravotto, *Green Chem.*, 2015, 17, 684.
J. Luo, Z. Fang, R. Smith Jr, *Progress in Energy and Combustion Science*, 2014, 41, 56.

Weber trasonic	H ₂ O	80	20	25	0,06	2.0	2,4
RSHC ^b	H ₂ O	-	10	40	10,00	10.0	1,6

^aThe delignification was measured by Py-GC/MS/FID (lignin proportion in the volatiles compared to untreated biomass) ^bLarge scale experiment (400 g)

Raw poplar wood

RSHC pre-treated

poplar wood

Conclusions

The influence of US pretreatment on the lignin constituent of biomass revealed itself in the case of poplar wood much slighter in comparison with wheat straw. The strongest decrease in the lignin content was observed for the samples obtained using the mixed solvent (GVL:H₂O) as well as 15% NH₄OH. The RSHC reactor is suitable for scale-up experiments, and yielded good results in terms of delignification (for wheat straw).

Aknowledgements

This work was part of H2020 project US4GREENCHEM